Durée : 180 minutes

Algèbre linéaire Examen Partie commune Automne 2020

Enoncé

Pour les questions à choix multiple, on comptera :

- +3 points si la réponse est correcte,
- 0 point si la question n'est pas répondue ou s'il y a plusieurs croix,
- -1 point si la réponse est incorrecte.

Pour les questions de type **vrai-faux**, on comptera :

- +1 points si la réponse est correcte,
 - 0 point si la question n'est pas répondue ou s'il y a plusieurs croix,
- -1 point si la réponse est incorrecte.

Les notations et la terminologie de cet énoncé sont celles utilisées dans les séries d'exercices et le cours d'Algèbre linéaire du semestre d'Automne 2020.

Notation

- Pour une matrice A, a_{ij} désigne l'élément situé sur la ligne i et la colonne j de la matrice.
- Pour un vecteur $\vec{x} \in \mathbb{R}^n$, x_i désigne la *i*-ème composante de \vec{x} .
- $-I_m$ désigne la matrice identité de taille $m \times m$.
- $-\mathbb{P}_n$ désigne l'espace vectoriel des polynômes réels de degré inférieur ou égal à n.
- $-M_{m,n}(\mathbb{R})$ désigne l'espace vectoriel des matrices de taille $m \times n$.
- Pour $\vec{x}, \vec{y} \in \mathbb{R}^n$, le produit scalaire euclidien est défini par $\vec{x} \cdot \vec{y} = x_1 y_1 + \ldots + x_n y_n$.

Première partie, questions à choix multiple

Pour chaque question marquer la case correspondante à la réponse correcte sans faire de ratures. Il n'y a qu'une seule réponse correcte par question.

Question 1 : Soit *A* une matrice symétrique telle que

$$\vec{v}_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \qquad \vec{v}_2 = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} \qquad \text{et} \qquad \vec{v}_3 = \begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix}$$

sont des vecteurs propres de A associés, respectivement, aux valeurs propres 1, 0 et 2. Alors

$$\Box A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & -2 \\ 0 & -2 & 2 \end{bmatrix} \qquad \Box A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & -1 \\ 0 & -1 & 1 \end{bmatrix}
\Box A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & -1 & 1 \end{bmatrix} \qquad \Box A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$

Question 2: Soit

$$A = \left[\begin{array}{rrrr} 1 & 0 & -1 & 4 \\ 0 & 1 & -3 & 2 \\ 0 & 0 & -1 & 0 \\ -3 & 0 & 0 & -1 \end{array} \right].$$

Alors la dimension de l'espace propre de A associé à la valeur propre $\lambda=1$ est égale à

$$\square$$
 0 \square 1 \square 2 \square 3

Question 3: L'inverse $B = A^{-1}$ de la matrice

$$A = \left[\begin{array}{rrr} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 4 & 0 & -1 \end{array} \right]$$

est tel que

Question 4: Le polynôme caractéristique de la matrice

$$\left[\begin{array}{ccc}
1 & 0 & -1 \\
4 & 1 & 2 \\
0 & 1 & 3
\end{array}\right]$$

est

$$-\lambda^3 + 5\lambda^2 - 4\lambda + 3$$

$$-\lambda^3 + 7\lambda^2 - \lambda$$

Question 5 : Si on calcule la décomposition LU de

$$A = \left[\begin{array}{rrrr} 1 & 2 & 0 & 1 \\ 2 & 3 & 1 & 0 \\ 0 & 1 & 2 & 4 \\ 1 & 0 & 3 & 2 \end{array} \right]$$

(en utilisant **seulement** les opérations élémentaires sur les lignes consistant à ajouter un multiple d'une ligne à une autre ligne **en dessous**), alors la matrice *L* obtenue est telle que

 $\ell_{42} = -1/3$

Question 6 : Soient α un paramètre réel et A la matrice

$$A = \left[\begin{array}{rrr} 1 & 1 & -2 \\ 1 & 3 & -4 \\ 3 & 4 & \alpha \end{array} \right].$$

Pour quelle valeur de α est-ce qu'on a rang(A) < 3?

Question 7: On considère \mathbb{R}^3 muni du produit scalaire euclidien. Soit \mathcal{B} une base de \mathbb{R}^3 définie par les vecteurs

$$\vec{u}_1 = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, \quad \vec{u}_2 = \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} \quad \text{et} \quad \vec{u}_3 = \begin{bmatrix} -1 \\ 1 \\ -1 \end{bmatrix}.$$

Alors une base orthogonale, obtenue en appliquant l'algorithme de Gram-Schmidt à $\mathcal B$, est donnée par les vecteurs

$$\square \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ -2 \end{bmatrix}, \begin{bmatrix} -2 \\ 1 \\ 1 \end{bmatrix}$$

$$\square \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}, \begin{bmatrix} -1 \\ 1 \\ -1 \end{bmatrix}$$

$$\square \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}, \begin{bmatrix} -4/3 \\ 2/3 \\ -2/3 \end{bmatrix}$$

$$\square \begin{bmatrix} 0 \\ 1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix}, \begin{bmatrix} 1/\sqrt{5} \\ 2/\sqrt{5} \\ 0 \end{bmatrix}, \begin{bmatrix} -1/\sqrt{3} \\ 1/\sqrt{3} \\ -1/\sqrt{3} \end{bmatrix}$$

Question 8 : On reprend les données de la question précédente. La projection orthogonale du vecteur

$$\left[\begin{array}{c}4\\2\\1\end{array}\right]$$

sur le sous-espace vectoriel engendré par les vecteurs \vec{u}_1, \vec{u}_2 est le vecteur

$$\begin{bmatrix}
7/3 \\
-7/6 \\
7/6
\end{bmatrix}$$

$$\begin{bmatrix}
 7/3 \\
 -7/6 \\
 7/6
 \end{bmatrix}
 \begin{bmatrix}
 5/3 \\
 19/6 \\
 -1/6
 \end{bmatrix}
 \begin{bmatrix}
 2 \\
 3 \\
 -1
 \end{bmatrix}
 \begin{bmatrix}
 5 \\
 8 \\
 -2
 \end{bmatrix}$$

$$\begin{bmatrix}
2 \\
3 \\
-1
\end{bmatrix}$$

$$\begin{bmatrix}
 5 \\
 8 \\
 -2
 \end{bmatrix}$$

Question 9: Soient

$$A = \begin{bmatrix} 1 & 1 \\ -2 & 1 \\ -1 & 1 \end{bmatrix}, \qquad \vec{b} = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \qquad \text{et} \qquad \hat{x} = \begin{bmatrix} \hat{x}_1 \\ \hat{x}_2 \end{bmatrix}.$$

$$ec{b} = \left[egin{array}{c} 1 \ 2 \ 1 \end{array}
ight]$$

et
$$\hat{x} = \begin{bmatrix} \hat{x}_1 \\ \hat{x}_2 \end{bmatrix}$$

Si \hat{x} est une solution au sens des moindres carrés du système $A\vec{x} = \vec{b}$, alors

$$\hat{x}_2 = 8/7$$

$$\hat{x}_2 = -2/7$$

$$\hat{x}_2 = 3$$

$$\hat{x}_2 = 6/7$$

Question 10: Soient

$$A = \begin{bmatrix} 1 & 2 & 4 \\ 0 & 1 & 2 \\ 3 & 2 & 1 \end{bmatrix} \qquad \text{et} \qquad \vec{b} = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}.$$

et
$$\vec{b} = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$$

Une solution $\vec{x} \in \mathbb{R}^3$ du système $A\vec{x} = \vec{b}$ a pour deuxième composante

$$x_2 = -3$$

$$x_2 = 6$$

Question 11: On se donne les bases de \mathbb{R}^2 et \mathbb{P}_2 suivantes

$$\mathcal{B} = \left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right\} \quad \text{et} \quad \mathcal{D} = \left\{ 1, t + t^2, t - t^2 \right\}.$$

$$\mathcal{D} = \{1, t + t^2, t - t^2\}.$$

Soit $T: \mathbb{R}^2 \to \mathbb{P}_2$ l'application linéaire définie par $T(\vec{x}) = x_1 t + x_2 t^2$ pour tout $\vec{x} \in \mathbb{R}^2$. Alors la matrice associée à T par rapport aux bases \mathcal{B} et \mathcal{D} est

$$\begin{bmatrix}
 0 & 0 \\
 1 & 1/2 \\
 0 & -1/2
 \end{bmatrix}$$

$$\begin{bmatrix}
0 & 0 \\
1 & 0 \\
1 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
 0 & 1 & 0 \\
 0 & 0 & 1
\end{bmatrix}
 \begin{bmatrix}
 0 & 0 \\
 1 & 1/2 \\
 0 & -1/2
\end{bmatrix}
 \begin{bmatrix}
 0 & 0 \\
 1 & 0 \\
 1 & 1
\end{bmatrix}
 \begin{bmatrix}
 0 & 0 \\
 1/2 & 1/2 \\
 1/2 & -1/2
\end{bmatrix}$$

Question 12:

Le produit C = AB des matrices

$$A = \begin{bmatrix} 1 & 0 & 1 & 4 \\ 2 & 3 & 1 & 8 \\ 1 & 0 & 3 & 5 \\ 4 & 1 & -3 & -2 \\ -2 & 1 & 0 & 3 \end{bmatrix} \quad \text{et} \quad B = \begin{bmatrix} 0 & 1 & -2 & 4 & 5 \\ 1 & 0 & 7 & -2 & 7 \\ 3 & 1 & 1 & 3 & 0 \\ 4 & -5 & 9 & 1 & 1 \end{bmatrix}$$

est tel que

Question 13: La droite de régression linéaire pour les points (1,2), (-1,5), (0,3) est

$$y = \frac{10}{3} - \frac{3}{2}t$$

$$y = \frac{3}{2} + \frac{10}{3}t$$

$$y = -\frac{10}{3} - \frac{3}{2}t$$

$$y = \frac{10}{3} - \frac{14}{9}t$$

Question 14: Soit \mathcal{B} la base de \mathbb{P}_2 donnée par $\mathcal{B} = \{-1+t, 2t-t^2, 2-t+3t^2\}$ et soit $p \in \mathbb{P}_2$ défini par $p(t) = t - 8t^2$. La troisième composante de p par rapport à la base \mathcal{B} est

Question 15: Soit

$$A = \left[\begin{array}{rrrr} 1 & 4 & 9 & -2 \\ 3 & 2 & 1 & 0 \\ 1 & 1 & 2 & 1 \\ 2 & 1 & -1 & 0 \end{array} \right].$$

Alors

Question 16: Soient les vecteurs de \mathbb{R}^4

$$\vec{a}_1 = \begin{bmatrix} 1 \\ 2 \\ 2 \\ 0 \end{bmatrix}, \qquad \vec{a}_2 = \begin{bmatrix} 2 \\ 1 \\ 4 \\ 4 \end{bmatrix} \qquad \text{et} \qquad \vec{b} = \begin{bmatrix} h \\ 2 \\ 2h \\ -2 \end{bmatrix}.$$

Pour quelle valeur de $h \in \mathbb{R}$ le vecteur \vec{b} est-il dans $\text{Vect}\{\vec{a}_1, \vec{a}_2\}$?

Question 17 : Soient $\mathcal{B} =$ représente la matrice de cha				
	$ p_{12} = 3 $	$ p_{12} = 0$	$ p_{12} = 2$	
Question 18: Soit R la for	rme échelonnée réduite de l	la matrice		
	$ \begin{bmatrix} 2 & 1 & 3 \\ 1 & 2 & 3 \\ 3 & 2 & 1 \end{bmatrix} $	$\begin{bmatrix} 3 & -4 \\ 3 & -1 \\ 1 & -2 \end{bmatrix}$.		
Alors, on a				
$r_{24} = -11/12$	$r_{24} = 19/12$	$r_{24} = -19/12$	$r_{24} = 17/12$	
Question 19: La matrice $\begin{bmatrix} 1 & 0 & 2 \\ 0 & 3 & 1 \\ 2 & 1 & 0 \end{bmatrix}$ est inversible et son inverse est diagonalisable orthogonalement				
est inversible et son inverse n'est pas diagonalisable orthogonalement n'est pas diagonalisable orthogonalement				
n'est pas inversible				
Question 20: Soient k et ℓ	des paramètres réels et			
	$A = \begin{bmatrix} 1 & i \\ 5 & 2 \\ 0 & i \end{bmatrix}$	$\left[egin{array}{ccc} k & 0 \ 2 & 1 \ \ell & 1 \end{array} ight].$		
Alors $\lambda = 6$ est une valeur p	propre de A lorsque			

Deuxième partie, questions du type Vrai ou Faux

Pour chaque question, marquer (sans faire de ratures) la case VRAI si l'affirmation est **toujours vraie** ou la case FAUX si elle **n'est pas toujours vraie** (c'est-à-dire, si elle est parfois fausse).

Question 21 : Si chaque ligne d'une matrice A est orthogonale à tous les vecteurs de Nul(A), alors la matrice A est symétrique.

VRAI FAUX

Question 22: L'ensemble

$$\left\{ \left[\begin{array}{cc} a & b \\ 0 & c \end{array} \right] \in M_{2,2}(\mathbb{R}) \text{ tel que } a, b, c \in \mathbb{R} \right\}$$

est un sous-espace vectoriel de $M_{2,2}(\mathbb{R})$.

VRAI FAUX

Question 23: Soient

$$\vec{v} = \begin{bmatrix} 3 \\ 2 \\ -1 \end{bmatrix} \quad \text{et} \quad A = \begin{bmatrix} 4 & 1 & 2 & 1 \\ 1 & -3 & 1 & 2 \\ 0 & 2 & 0 & -3 \end{bmatrix}.$$

Alors le vecteur \vec{v} est dans l'image de l'application linéaire $T: \mathbb{R}^4 \to \mathbb{R}^3$ définie par $T(\vec{x}) = A\vec{x}$.

VRAI FAUX

Question 24: Soit

$$A = \left[\begin{array}{ccc} 5 & 1 & -2 \\ 3 & -2 & 1 \\ 2 & 3 & -3 \end{array} \right].$$

Le vecteur $\begin{bmatrix} 3 \\ 11 \\ -1 \end{bmatrix}$ est dans Nul(A).

VRAI FAUX

Question 25 : Soit A la matrice de la question précédente. Le vecteur $\begin{bmatrix} 6 \\ 1 \\ 5 \end{bmatrix}$ est dans Col(A), le sousespace vectoriel engendré par les colonnes de A.

□ VRAI □ FAUX

Question	26:	Le système	linéaire

$$\begin{cases} 2x & -4z + 2t = -10 \\ y + z & = 2 \\ 3x + 5y + 8z - t = -6 \\ 2x + y - 3z + 2t = 1 \end{cases}$$

	$\begin{cases} 2x & -4z \\ y+z \\ 3x+5y+8z \\ 2x+y-3z \end{cases}$	+2t = -10 $= 2$ $- t = -6$ $+2t = 1$		
possède au moins une solution.				
	☐ VRAI	FAUX		
Question 27: Si une matrice <i>A</i> est i	nversible, alors A^T	A est aussi inversible.		
	☐ VRAI	FAUX		
Question 28: Soit A une matrice de de A^TA est égal à 2.	taille 3×3 dont les	valeurs propres sont -1 , 1 et 2. Alors le déterminan		
	☐ VRAI	FAUX		
		te, A est une matrice de taille 3×3 dont les valeurs et le déterminant de A^{-1} est égal à $-1/2$.		
	☐ VRAI	FAUX		
	propres associées	ille $n \times n$. On suppose que $\vec{v}_1, \vec{v}_2, \vec{v}_3 \in \mathbb{R}^n$ sont des sont respectivement α , α et β , où $\alpha, \beta \in \mathbb{R}$ et $\alpha \neq \beta$		
	☐ VRAI	☐ FAUX		
Question 31: Soient $\vec{u}, \vec{v}, \vec{w} \in \mathbb{R}^3$ tralors \vec{u} est orthogonal à \vec{w} .	ois vecteurs non-n	nuls. Si \vec{u} est orthogonal à \vec{v} et \vec{v} est orthogonal à \vec{w}		
	☐ VRAI	FAUX		
Question 32 : Soit A une matrice de taille 8×5 telle que $\dim(\text{Nul}(A)) = 2$. Alors la dimension du sous espace vectoriel engendré par les lignes de A est égale à 3 .				

VRAI FAUX

Question 33: Soit *A* une matrice de taille $m \times (m+1)$ et telle que $Col(A) = \mathbb{R}^m$. Soient $\vec{x}, \vec{y} \in \mathbb{R}^{m+1}$ tels que $\vec{x} \neq \vec{y}$ et $A\vec{x} = A\vec{y}$ et soit $\vec{z} = \vec{x} - \vec{y}$. Alors $\{\vec{z}\}$ est une base de Nul(A). VRAI **FAUX Question 34:** Les vecteurs de \mathbb{R}^3 suivants $\begin{bmatrix} 1 \\ 3 \\ 1 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 3 \\ 2 \end{bmatrix}$ sont linéairement indépendants. **VRAI** FAUX **Question 35:** Soient A une matrice de taille $m \times n$ et B une matrice de taille $n \times m$ telles que BA soit inversible. Alors le rang de A est égal à n. VRAI **FAUX** Question 36: Sachant que $B = \begin{bmatrix} 1 & 0 & 0 & 47/11 \\ 0 & 1 & 0 & -49/22 \\ 0 & 0 & 1 & 3/11 \\ 0 & 0 & 0 & 0 \end{bmatrix}$

$$B = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

est la forme échelonnée réduite de la matrice

$$A = \left[\begin{array}{rrrr} 1 & 2 & -3 & -1 \\ 2 & 4 & 5 & 1 \\ 3 & 6 & 2 & 0 \\ -1 & 0 & 1 & -4 \end{array} \right],$$

alors une base du sous-espace vectoriel engendré par les lignes de A est donnée par les vecteurs

VRAI

$$\begin{bmatrix} 1 \\ 0 \\ 0 \\ 47/11 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \\ -49/22 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \\ 3/11 \end{bmatrix}.$$

FAUX

Question 37: La matrice	$\begin{bmatrix} 3 & 2 \\ 0 & 4 \\ 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 \\ -12 \\ 5 \end{bmatrix}$
est diagonalisable.		
] VRAI	FAUX
Question 38 : Soit S un sous-ensemble une base de V .	de l'espace vec	toriel V . Si dim $V = n$ et si S engendre V , alors S est
	VRAI	☐ FAUX
Question 39 : Soient V un espace V et $T: V \to W$ une application linéaire in		nension 2, W un espace vectoriel de dimension 5 a dimension de $Im(T)$ est égale à 2.
Г	VRAI	FAUX
Question 40 : Si A est une matrice de à 2.		rs la dimension de $Nul(A)$ est plus grande ou égale
	VRAI	FAUX